Issue 12, 2014

An electric-field induced dynamical state in dispersions of charged colloidal rods

Abstract

The response of concentrated dispersions of charged colloids to low-frequency electric fields is governed by field-induced inter-colloidal interactions resulting from the polarization of electric double layers and the layer of condensed ions, association and dissociation of condensed ions, as well as hydrodynamic interactions through field-induced electro-osmotic flow. The phases and states that can be formed by such field-induced interactions are an essentially unexplored field of research. Experiments on concentrated suspensions of rod-like colloids (fd-virus particles), within the isotropic–nematic phase coexistence region, showed that a number of phases/states are induced, depending on the field amplitude and frequency [Soft Matter, 2010, 6, 273]. In particular, a dynamical state is found where nematic domains form and melt on a time scale of the order of seconds. We discuss the microscopic origin of this dynamical state, which is attributed to the cyclic, electric-field induced dissociation and association of condensed ions. A semi-quantitative theory is presented for the dynamics of melting and formation of nematic domains, including a model for the field-induced dissociation/association of condensed ions. The resulting equation of motion for the orientational order parameter is solved numerically for parameters complying with the fd-virus system. A limit-cycle is found, with a cycling-time that diverges at the transition line in the field-amplitude versus frequency plane where the dynamical state first appears, in accord with experimental findings.

Graphical abstract: An electric-field induced dynamical state in dispersions of charged colloidal rods

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
27 Aug 2013
Accepted
06 Dec 2013
First published
09 Dec 2013

Soft Matter, 2014,10, 1987-2007

An electric-field induced dynamical state in dispersions of charged colloidal rods

J. K. G. Dhont and K. Kang, Soft Matter, 2014, 10, 1987 DOI: 10.1039/C3SM52277F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements