Issue 14, 2014

Early-time dynamics of actomyosin polarization in cells of confined shape in elastic matrices

Abstract

The cell shape and the rigidity of the extracellular matrix have been shown to play an important role in the regulation of cytoskeleton structure and force generation. Elastic stresses that develop by actomyosin contraction feedback on myosin activity and govern the anisotropic polarization of stress fibers in the cell. We theoretically study the consequences that the cell shape and matrix rigidity may have on the dynamics and steady state polarization of actomyosin forces in the cell. Actomyosin forces are assumed to polarize in accordance with the stresses that develop in the cytoskeleton. The theory examines this self-polarization process as a relaxation response determined by two distinct susceptibility factors and two characteristic times. These reveal two canonical polarization responses to local variations in the elastic stress: an isotropic response, in which actomyosin dipolar stress isotropically changes in magnitude, and an orientational response, in which actomyosin forces orient with no net change in magnitude. Actual polarization may show up as a superimposition of the two mechanisms yielding different phases in the polarization response as observed experimentally. The cell shape and elastic moduli of the surroundings are shown to govern both the dynamics of the process as well as the steady-state. We predict that in the steady-state, beyond a critical matrix rigidity, spherical cells exert maximal force, and below that rigidity, elongated or flattened cells exert more force. Similar behaviors are reflected in the rate of the polarization process. The theory is also applicable to study the elastic response of whole cell aggregates in a gel.

Graphical abstract: Early-time dynamics of actomyosin polarization in cells of confined shape in elastic matrices

Supplementary files

Article information

Article type
Paper
Submitted
26 Sep 2013
Accepted
17 Jan 2014
First published
28 Feb 2014

Soft Matter, 2014,10, 2453-2462

Early-time dynamics of actomyosin polarization in cells of confined shape in elastic matrices

N. Nisenholz, M. Botton and A. Zemel, Soft Matter, 2014, 10, 2453 DOI: 10.1039/C3SM52524D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements