Issue 17, 2014

Properties of triple shape memory composites prepared via polymerization-induced phase separation

Abstract

Research in the field of shape memory polymers has recently witnessed the introduction of increasing complexity of material response, including such phenomena as triple/multishape behavior, temperature memory, and reversible actuation. Ordinarily, such complexity in physical behaviour is achieved through comparable complexity in material composition and synthesis. Seeking to achieve a triple shape behaviour with a simple route to materials synthesis, we introduce here a method that utilizes polymerization induced phase separation (PIPS) to yield the requisite combination of microstructure and composition. Thus, two blends incorporating epoxy and poly(ε-caprolactone) were developed using commercially available reactants, one featuring a semicrystalline epoxy and the other featuring an amorphous epoxy. We show that both blends exhibited distinct transition temperatures and three modulus-temperature plateaus needed for triple shape behaviour. Despite these similarities, their physical character at room temperature is vastly different: the semicrystalline epoxy material is elastomeric and the amorphous epoxy material is highly stiff. Characterization of the triple shape behaviour revealed an ability of both systems to fix two separate deformations independently, one by PCL crystallization and a second one by epoxy crystallization or vitrification, and recover both programmed shapes separately upon heating. Given the simplicity of fabrication, we envision application as multi-shape coatings, adhesives, and films.

Graphical abstract: Properties of triple shape memory composites prepared via polymerization-induced phase separation

Supplementary files

Article information

Article type
Paper
Submitted
07 Oct 2013
Accepted
26 Feb 2014
First published
28 Feb 2014

Soft Matter, 2014,10, 3112-3121

Properties of triple shape memory composites prepared via polymerization-induced phase separation

A. H. Torbati, H. B. Nejad, M. Ponce, J. P. Sutton and P. T. Mather, Soft Matter, 2014, 10, 3112 DOI: 10.1039/C3SM52599F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements