Issue 11, 2013

Improved removal of lead(ii) from water using a polymer-based graphene oxide nanocomposite

Abstract

Poly(N-vinylcarbazole) (PVK) was blended with graphene oxide (GO) to form a PVK–GO polymer nanocomposite capable of adsorbing heavy metal from aqueous solutions. The homogenous distribution of GO in the PVK–GO nanocomposite was determined by X-ray photoelectron microscopy (XPS) and attenuated total reflectance – infrared spectroscopy (ATR-IR). The results show that the adsorption capacity of Pb2+ by the nanocomposite increased with increasing amount of GO. This phenomenon was attributed to the increasing concentration of oxygen-containing functional groups available in the nanocomposite. Furthermore, the adsorption of Pb2+ onto PVK–GO nanocomposite was influenced by pH changes. Higher pHs had a better adsorption capacity than lower pHs, due to changes in the nanocomposite surface properties. The highest adsorption capacity of the PVK–GO nanocomposite for Pb2+ was 887.98 mg g−1 and fits well the Langmuir model. This adsorption capacity was achieved using a 10 : 90 wt% ratio of PVK : GO at pH 7 ± 0.5 with a 90 min contact time. The high removal efficiency of this nanocomposite suggests that PVK–GO is effective and can be applied to remove heavy metals from water.

Graphical abstract: Improved removal of lead(ii) from water using a polymer-based graphene oxide nanocomposite

Article information

Article type
Paper
Submitted
27 Sep 2012
Accepted
29 Jan 2013
First published
29 Jan 2013

J. Mater. Chem. A, 2013,1, 3789-3796

Improved removal of lead(II) from water using a polymer-based graphene oxide nanocomposite

Y. L. F. Musico, C. M. Santos, M. L. P. Dalida and D. F. Rodrigues, J. Mater. Chem. A, 2013, 1, 3789 DOI: 10.1039/C3TA01616A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements