Issue 19, 2013

Synthesis and characterization of thermally rearranged (TR) polymers: effect of glass transition temperature of aromatic poly(hydroxyimide) precursors on TR process and gas permeation properties

Abstract

Soluble aromatic polyimides containing ortho-positioned hydroxy groups were synthesized as precursors for thermal rearrangement (TR) to polybenzoxazoles (PBOs). Fully imidized polyimides with high-molecular-weights were afforded via a ‘one-pot’ solution imidization technique (i.e., ester-acid method). The poly(hydroxyimide)s were designed to vary in their glass transition temperatures (Tg) by carefully selecting dianhydride–bisaminophenol combinations to introduce various levels of chain rigidity. TR conversion (imide-to-benzoxazole conversion) occurred in solid-state films only under inert atmosphere and over a temperature range of 300–450 °C, depending on the chemical structure (chain rigidity) of precursors. The effect of the precursor Tg on TR conversion was studied using TGA, DSC, FTIR and gel fraction measurements. The TR conversion temperature of imide-to-benzoxazole rearrangement strongly depended on the precursor Tg. Thus, for example, the feasible TR temperature was successfully reduced by ∼100 °C by lowering the precursor Tg by using a bisphenol A type dianhydride in the polymer synthesis. Gas permeation properties of representative TR systems are also reported. The TR process significantly increased gas permeabilities while maintaining good selectivities. By correlating the TR conversion degree with gas transport properties, there appears to be an optimal TR conversion degree that can maximize both gas permeability and selectivity. Systematic studies on TR polymers derived from low Tg precursors were suggested to further explore this correlation.

Graphical abstract: Synthesis and characterization of thermally rearranged (TR) polymers: effect of glass transition temperature of aromatic poly(hydroxyimide) precursors on TR process and gas permeation properties

Article information

Article type
Paper
Submitted
17 Jan 2013
Accepted
26 Mar 2013
First published
26 Mar 2013

J. Mater. Chem. A, 2013,1, 6063-6072

Synthesis and characterization of thermally rearranged (TR) polymers: effect of glass transition temperature of aromatic poly(hydroxyimide) precursors on TR process and gas permeation properties

R. Guo, D. F. Sanders, Z. P. Smith, B. D. Freeman, D. R. Paul and J. E. McGrath, J. Mater. Chem. A, 2013, 1, 6063 DOI: 10.1039/C3TA10261K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements