Issue 24, 2013

One-pot synthesis of a RGO-supported ultrafine ternary PtAuRu catalyst with high electrocatalytic activity towards methanol oxidation in alkaline medium

Abstract

In this paper, we report a facile, eco-friendly, one-pot method for the synthesis of a reduced graphene oxide (RGO) supported PtAuRu alloy nanoparticle catalyst (PtAuRu/RGO) by simultaneous reduction of H2PtCl6, HAuCl4, RuCl3 and graphene oxide (GO) using ethanol as the reduction agent. The as-formed PtAuRu/RGO catalyst has been characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and induced coupled plasma-atomic emission spectroscopy (ICP-AES). It is found that the PtAuRu nanoparticles formed alloy structures about 3.09 ± 0.73 nm in diameter and are evenly distributed on the RGO surface. The reduction degree of GO together with metal precursors is higher than that of only GO. Moreover, electrochemical measurements reveal that the electrocatalytic activity and stability of the PtAuRu/RGO catalyst for the methanol oxidation reaction are superior to those of PtAu/RGO, PtRu/RGO and Pt/RGO catalysts. These findings suggest that the prepared PtAuRu/RGO catalyst has great potential for use in direct methanol fuel cells (DMFCs).

Graphical abstract: One-pot synthesis of a RGO-supported ultrafine ternary PtAuRu catalyst with high electrocatalytic activity towards methanol oxidation in alkaline medium

Supplementary files

Article information

Article type
Paper
Submitted
30 Mar 2013
Accepted
15 Apr 2013
First published
16 Apr 2013

J. Mater. Chem. A, 2013,1, 7255-7261

One-pot synthesis of a RGO-supported ultrafine ternary PtAuRu catalyst with high electrocatalytic activity towards methanol oxidation in alkaline medium

F. Ren, C. Wang, C. Zhai, F. Jiang, R. Yue, Y. Du, P. Yang and J. Xu, J. Mater. Chem. A, 2013, 1, 7255 DOI: 10.1039/C3TA11291H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements