Issue 2, 2014

Amine-functionalized holey graphene as a highly active metal-free catalyst for the oxygen reduction reaction

Abstract

Amine functionalized holey graphene (AFHG), synthesized by the hydrothermal reaction of GO and ammonia and the subsequent KOH etching, has been used as a metal-free catalyst for the oxygen reduction reaction (ORR). It shows that AFHG is highly active for the ORR and exhibits higher electrocatalytic activity than graphene, nitrogen-doped graphene (NG) and amine functionalized graphene (AFG), which could be demonstrated from its higher current density and more positive half-wave and onset potentials for the ORR. Although AFHG also exhibits a slightly higher overpotential towards ORR, it is indeed more kinetically facile than the commercial JM Pt/C 40 wt%. Its higher electrochemical performance could be attributed to the presence of the electron donating group (e.g. amine) and a large number of holes in its sheet plate and the porous structure in its randomly stacked solid, which provide AFHG with higher electrical conductivity, more active edge N atoms and easier accessibility to oxygen, respectively. The stability measurements show that AFHG is more stable than graphene, NG, AFG and the JM Pt/C 40 wt% and exhibits higher immunity towards methanol crossover and CO poisoning than the JM Pt/C 40 wt%. Over 10 h of the ORR, AFHG loses only <7% of its original activity in the absence of methanol or CO, and the introduction of methanol or CO has no effect on its oxygen reduction activity, which makes it highly desirable as a metal-free catalyst for the ORR.

Graphical abstract: Amine-functionalized holey graphene as a highly active metal-free catalyst for the oxygen reduction reaction

Supplementary files

Article information

Article type
Paper
Submitted
24 Sep 2013
Accepted
30 Oct 2013
First published
31 Oct 2013

J. Mater. Chem. A, 2014,2, 441-450

Amine-functionalized holey graphene as a highly active metal-free catalyst for the oxygen reduction reaction

Z. Jiang, Z. Jiang, X. Tian and W. Chen, J. Mater. Chem. A, 2014, 2, 441 DOI: 10.1039/C3TA13832A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements