Issue 10, 2014

Annealed NaV3O8 nanowires with good cycling stability as a novel cathode for Na-ion batteries

Abstract

In this work, NaV3O8 nanowires are proposed as a novel cathode for a Na-ion battery for the first time. The as-prepared nanowires are characterized well by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, thermogravimetry (TG), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Sodium insertion/extraction properties of as-prepared nanowires with or without thermal treatment are compared. It is found that thermal treatment could remove some crystal water in the host, resulting in a contracted crystal volume. In comparison with the untreated sample, although the reversible discharge capacity of annealed NaV3O8·xH2O nanowires is decreased from 169.6 mA h g−1 to 145.8 mA h g−1 when cycled at 10 mA g−1, it shows good capacity retention of ca. 91.1% after 50 cycles, much higher than that (51.9%) of the untreated sample. Annealed NaV3O8 nanowires exhibit much better cycling stability and charge–discharge plateaus during the Na-ion insertion/extraction processes, which should be attributed to the contracted crystal volume and the increased crystallinity.

Graphical abstract: Annealed NaV3O8 nanowires with good cycling stability as a novel cathode for Na-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
02 Nov 2013
Accepted
10 Dec 2013
First published
13 Dec 2013

J. Mater. Chem. A, 2014,2, 3563-3570

Annealed NaV3O8 nanowires with good cycling stability as a novel cathode for Na-ion batteries

H. He, G. Jin, H. Wang, X. Huang, Z. Chen, D. Sun and Y. Tang, J. Mater. Chem. A, 2014, 2, 3563 DOI: 10.1039/C3TA14486K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements