Issue 10, 2014

A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries

Abstract

Rechargeable Mg batteries have been regarded as a viable battery technology for grid scale energy storage and transportation applications. However, the limited performance of Mg2+ electrolytes has been a primary technical hurdle to develop high energy density rechargeable Mg batteries. In this study, MgCl2 is demonstrated as a non-nucleophilic and cheap Mg2+ source in combination with Al Lewis acids (AlCl3, AlPh3 and AlEtCl2) to formulate a series of Mg2+ electrolytes, representing the simplest method to prepare Mg2+ conductive electrolytes (no precursor synthesis, free of recrystallization and giving quantitative yield). These electrolytes are characterized by high oxidation stability (up to 3.4 V vs. Mg), improved electrophile compatibility and electrochemical reversibility (up to 100% coulombic efficiency). Three electrolyte systems (MgCl2–AlCl3, MgCl2–AlPh3, and MgCl2–AlEtCl2) were fully characterized by multinuclear NMR (1H, 27Al{1H} and 25Mg{1H}) spectroscopies and electrochemical analysis. Single crystal X-ray diffraction and NMR studies consistently established molecular structures of the three electrolytes sharing a common Mg2+-dimer mono-cation, [(μ-Cl)3Mg2(THF)6]+, along with an anion (AlCl4, AlPh3Cl and AlEtCl3 respectively). Clean and dendrite free Mg bulk plating and viable battery performance were validated through representative studies using the MgCl2–AlEtCl2 electrolyte. The reaction mechanism of MgCl2 and the Al Lewis acids in THF is discussed to highlight the formation of the electrochemically active [(μ-Cl)3Mg2(THF)6]+ dimer mono-cation in these electrolytes and their improved performance compared to reported electrolytes using nucleophilic Mg2+ sources.

Graphical abstract: A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries

Supplementary files

Article information

Article type
Paper
Submitted
23 Oct 2013
Accepted
02 Dec 2013
First published
03 Dec 2013

J. Mater. Chem. A, 2014,2, 3430-3438

A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries

T. Liu, Y. Shao, G. Li, M. Gu, J. Hu, S. Xu, Z. Nie, X. Chen, C. Wang and J. Liu, J. Mater. Chem. A, 2014, 2, 3430 DOI: 10.1039/C3TA14825D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements