Issue 18, 2014

Transparent aluminium zinc oxide thin films with enhanced thermoelectric properties

Abstract

Improved thermoelectric properties of Aluminum Zinc Oxide (AZO) thin films deposited by radio frequency (RF) and pulsed Direct Current (DC) magnetron sputtering at room temperature are reported. In both techniques films were deposited using sintered and non-sintered targets produced from nano-powders. It is confirmed that both the Al doping concentration and film thickness control the thermoelectric, optical and structural properties of these films. Seebeck coefficients up to −134 μV K−1 and electrical conductivities up to 4 × 104 (Ω m)−1 lead to power factors up to 4 × 10−4 W mK−2, which is above the state-of-the-art for similar materials, almost by a factor of three. The thermoelectric IV response of an optimized AZO element with a planar geometry was measured and a maximum power output of 2.3 nW, for a temperature gradient of 20 K near room temperature, was obtained. Moreover, the low thermal conductivity (<1.19 W mK−1) yields a ZT value above 0.1. This is an important result as it is at least three times higher than the ZT found in the literature for AZO, at room temperature, opening new doors for applications of this inexpensive, abundant and environmental friendly material, in a new era of thermoelectric devices.

Graphical abstract: Transparent aluminium zinc oxide thin films with enhanced thermoelectric properties

Article information

Article type
Paper
Submitted
05 Dec 2013
Accepted
18 Feb 2014
First published
18 Feb 2014

J. Mater. Chem. A, 2014,2, 6649-6655

Author version available

Transparent aluminium zinc oxide thin films with enhanced thermoelectric properties

J. Loureiro, N. Neves, R. Barros, T. Mateus, R. Santos, S. Filonovich, S. Reparaz, C. M. Sotomayor-Torres, F. Wyczisk, L. Divay, R. Martins and I. Ferreira, J. Mater. Chem. A, 2014, 2, 6649 DOI: 10.1039/C3TA15052F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements