Issue 10, 2014

All-plastic solar cells with a high photovoltaic dynamic range

Abstract

We report on semitransparent air-processed all-plastic solar cells, fabricated from vacuum-free processes, comprising two polymer electrodes, a polymeric work-function modification layer and a polymer:fullerene photoactive layer. The active layer and the top PEDOT:PSS electrode were prepared by sequential film-transfer lamination on polyethylenimine-modified PEDOT:PSS bottom electrodes. The transferring of films offers ease of layer patterning and the misalignment of defects in the different layers resulting from the additive film transfer lamination process yields high shunt resistance values of 108 ohm cm2. Consequently, all-plastic solar cells fabricated with this process exhibit very low reverse bias dark current and can operate in the photovoltaic quadrant with light irradiance varying over five orders of magnitude. The analysis of the values of the open-circuit voltage as a function of light irradiance over that wide dynamic range points toward an ideality factor of n = 1.82 and a reverse saturation current density of 6.2 × 10−11 A cm−2 for solar cells with an active layer comprised of a blend of poly(3-hexylthiophene) and an indene fullerene bis-adduct.

Graphical abstract: All-plastic solar cells with a high photovoltaic dynamic range

Supplementary files

Article information

Article type
Paper
Submitted
06 Dec 2013
Accepted
17 Jan 2014
First published
17 Jan 2014

J. Mater. Chem. A, 2014,2, 3492-3497

All-plastic solar cells with a high photovoltaic dynamic range

Y. Zhou, T. M. Khan, J. W. Shim, A. Dindar, C. Fuentes-Hernandez and B. Kippelen, J. Mater. Chem. A, 2014, 2, 3492 DOI: 10.1039/C3TA15073A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements