Issue 35, 2013

Highly selective recognition and ultrasensitive quantification of enantiomers

Abstract

The ability to recognize and quantify the molecular chirality of enantiomers at the nanolevel in biological systems constitutes the basis of many critical areas for specific targeting in drug development and metabolite probing. Plasmonic nanoparticle dimers exhibit circular dichroism effects at visible wavelengths, amplifying the chiral signal of chiral molecules. We demonstrate the self-assembly of plasmonic chiroptical dimers through multibody attractive forces mediated by cysteine, which amplified the plasmonic chirality of enantiomers using enantiomeric cysteines (L and D), and achieved chiral recognition and a quantitative chiroptical sensing platform, with a detection limit of 20 pM level for L-cysteine. The versatility of nanoparticle dimers with customized chiroptical response opens up the avenue for adaptation of the plasmonic chiroptical platform for the drug development and proteomic profiling of metabolites.

Graphical abstract: Highly selective recognition and ultrasensitive quantification of enantiomers

Supplementary files

Article information

Article type
Paper
Submitted
18 May 2013
Accepted
10 Jul 2013
First published
11 Jul 2013

J. Mater. Chem. B, 2013,1, 4478-4483

Highly selective recognition and ultrasensitive quantification of enantiomers

L. Xu, Z. Xu, W. Ma, L. Liu, L. Wang, H. Kuang and C. Xu, J. Mater. Chem. B, 2013, 1, 4478 DOI: 10.1039/C3TB20692K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements