Issue 32, 2013

Long range order in Si(100) surfaces engineered with porphyrin nanostructures

Abstract

Engineering of Si(100) with ordered organic nanostructures represents an advanced method to manufacture hybrid organic/inorganic systems useful for different applications. Well-ordered and densely packed molecules can be obtained by a self-assembly process that depends on directional inter-molecular interactions such as π–π stacking, electrostatic, dipole–dipole or van der Waals interactions, and other more complex forces. Macrocycles are well known to aggregate both in solution and in thin films as a result of some of the above-mentioned interactions. In our study, Si(100) substrates were functionalized with a covalent 4-ClCH2C6H4SiCl3 monolayer that binds to the surface using the –SiCl3 group and leaves a –CH2Cl group unreacted. The remaining alkyl chloride functionality at the top of the Si(100) substrate allowed additional covalent functionalization with a porphyrin monolayer that resulted in ordered, surface-confined porphyrin assemblies. X-ray photoelectron spectroscopy gave indication of the porphyrin grafting mode. Atomic force microscopy showed a long range order of these nanostructures. Emission measurements confirmed the porphyrin luminescence.

Graphical abstract: Long range order in Si(100) surfaces engineered with porphyrin nanostructures

Article information

Article type
Paper
Submitted
05 Apr 2013
Accepted
16 Jun 2013
First published
17 Jun 2013

J. Mater. Chem. C, 2013,1, 4979-4984

Long range order in Si(100) surfaces engineered with porphyrin nanostructures

D. A. Cristaldi, A. Motta, S. Millesi, T. Gupta, M. Chhatwal and A. Gulino, J. Mater. Chem. C, 2013, 1, 4979 DOI: 10.1039/C3TC30628C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements