Issue 5, 2014

Plasmonic optical sensors printed from Ag–PVA nanoinks

Abstract

In this paper we report on the use of a nanocomposite based on silver nanoparticles embedded in PVA as a plasmonic optical sensor to detect and quantify trace amounts of amines in gas and water, respectively. The transduction mechanism of the sensor is based on the changes of the LSPR band of Ag NPs when analyte molecules are chemisorbed on their surface. The Ag–PVA sensors are fabricated by means of a high-precision microplotter, a direct-write technology developed for printing materials from solution. The nanoink is formulated with a metal precursor (AgNO3) and a polymer (PVA) using an adequate mixture of solvents to meet the rheological requirements for the fluid dispensing process. The LSPR intensity is the most sensitive magnitude to follow the interaction between Ag NPs embedded in PVA and amines. Ag–PVA patterns are tested as a plasmonic optical sensor for the detection of ethylenediamine in solution showing a limit of detection as low as 0.1 nM. Moreover Ag nanocomposite patterns are also used for sensing vapours of several biogenic (cadaverine and putrescine) and synthetic (ethylenediamine and methylenediamine) amines, where shorter amines exhibit the largest sensor response. This plasmonic optical sensor is also tested in real-time monitoring of chicken meat spoilage at room temperature. We believe that the Ag–PVA nanocomposite can be the basis for the development of sensor spots, bar-codes and other labels for smart packaging technology, among other sensing applications.

Graphical abstract: Plasmonic optical sensors printed from Ag–PVA nanoinks

Supplementary files

Article information

Article type
Paper
Submitted
13 Aug 2013
Accepted
13 Nov 2013
First published
13 Nov 2013

J. Mater. Chem. C, 2014,2, 908-915

Plasmonic optical sensors printed from Ag–PVA nanoinks

R. Abargues, P. J. Rodriguez-Canto, S. Albert, I. Suarez and J. P. Martínez-Pastor, J. Mater. Chem. C, 2014, 2, 908 DOI: 10.1039/C3TC31596G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements