Issue 17, 2014

An electron deficient dicyanovinylene-ladder-type pentaphenylene derivative for n-type organic field effect transistors

Abstract

A bridged pentaphenylene derivative functionalized with dicyanovinylene units LPP([double bond, length as m-dash]C(CN)2)2 has been designed, synthesized and characterized. The optical and electrochemical properties have been carefully studied through a combined experimental and theoretical approach and compared with those of two pentaphenylene derivatives bearing methylenes (LPP) or carbonyl (LPP([double bond, length as m-dash]O)2) on the bridgeheads. LPP([double bond, length as m-dash]C(CN)2)2 which possesses a very low LUMO level, ca. −4.02 eV, has been successfully used as an active layer in n-channel OFETs using the epoxy based photoresist SU-8 as a gate insulator. LPP([double bond, length as m-dash]C(CN)2)2 based n-channel OFETs show low voltage functioning (low gate–source and drain–source voltages), high ratio between the on and the off currents (2 × 105), interesting subthreshold swing (S = 1) and excellent stability under electrical stress and in a nitrogen atmosphere. More importantly, we have also shown that LPP([double bond, length as m-dash]C(CN)2)2 based n-channel OFETs present an excellent environmental stability. This work is to the best of our knowledge the first report on bridged pentaphenylene-based semiconductors in n-type OFETs and highlights the potential of such type of material to provide air stable OFETs.

Graphical abstract: An electron deficient dicyanovinylene-ladder-type pentaphenylene derivative for n-type organic field effect transistors

Supplementary files

Article information

Article type
Paper
Submitted
30 Sep 2013
Accepted
18 Nov 2013
First published
22 Nov 2013

J. Mater. Chem. C, 2014,2, 3292-3302

An electron deficient dicyanovinylene-ladder-type pentaphenylene derivative for n-type organic field effect transistors

E. Jacques, M. Romain, A. Yassin, S. Bebiche, M. Harnois, T. Mohammed-Brahim, J. Rault-Berthelot and C. Poriel, J. Mater. Chem. C, 2014, 2, 3292 DOI: 10.1039/C3TC31925C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements