Issue 12, 2014

Iridium(iii) complexes adopting 1,2-diphenyl-1H-benzoimidazole ligands for highly efficient organic light-emitting diodes with low efficiency roll-off and non-doped feature

Abstract

Two novel iridium(III) complexes (pbi)2Ir(mtpy) (1) and (pbi)2Ir(pbim) (2) adopting 1,2-diphenyl-1H-benzoimidazole (Hpbi) as cyclometalated ligands were successfully synthesized and characterized. Strong emissions at 501 and 536 nm with high photoluminescence quantum yields of 48% and 91% in CH2Cl2 at 298 K were obtained for 1 and 2, respectively. The quantum chemical calculations and the photophysical properties indicated that the dominant 3MLCT (metal-to-ligand charge-transfer) state mixed with 3LLCT (ligand-to-ligand charge-transfer) and 3LC (ligand-centered 3π–π*) characters contributed to their phosphorescence emissions. Doped organic light-emitting diodes (OLEDs) based on 1 and 2 showed a peak current efficiency of 45.0 cd A−1 and power efficiency of 47.9 lm W−1 accompanied by very low efficiency roll-off values. In their non-doped OLEDs, high efficiencies of 24.4 cd A−1 and 26.3 lm W−1 were achieved as well. These appealing results reveal that complexes 1 and 2 open interesting perspectives for the development of high-performance OLEDs in the future.

Graphical abstract: Iridium(iii) complexes adopting 1,2-diphenyl-1H-benzoimidazole ligands for highly efficient organic light-emitting diodes with low efficiency roll-off and non-doped feature

Supplementary files

Article information

Article type
Paper
Submitted
22 Oct 2013
Accepted
25 Dec 2013
First published
06 Jan 2014

J. Mater. Chem. C, 2014,2, 2150-2159

Iridium(III) complexes adopting 1,2-diphenyl-1H-benzoimidazole ligands for highly efficient organic light-emitting diodes with low efficiency roll-off and non-doped feature

H. Cao, H. Sun, Y. Yin, X. Wen, G. Shan, Z. Su, R. Zhong, W. Xie, P. Li and D. Zhu, J. Mater. Chem. C, 2014, 2, 2150 DOI: 10.1039/C3TC32092H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements