Issue 18, 2014

Pulsed laser writing of holographic nanosensors

Abstract

Tuneable optical sensors have been developed to sense chemical stimuli for a range of applications from bioprocess and environmental monitoring to medical diagnostics. Here, we present a porphyrin-functionalised optical sensor based on a holographic grating. The holographic sensor fulfils two key sensing functions simultaneously: it responds to external stimuli and serves as an optical transducer in the visible region of the spectrum. The sensor was fabricated via a 6 nanosecond-pulsed laser (350 mJ, λ = 532 nm) photochemical patterning process that enabled a facile fabrication. A novel porphyrin derivative was synthesised to function as the crosslinker of a polymer matrix, the light-absorbing material, the component of a diffraction grating, as well as the cation chelating agent in the sensor. The use of this multifunctional porphyrin permitted two-step fabrication of a narrow-band light diffracting photonic sensing structure. The resulting structure can be tuned finely to diffract narrow-band light based on the changes in the fringe spacing within the polymer and the system's overall index of refraction. We show the utility of the sensor by demonstrating its reversible colorimetric tuneability in response to variation in concentrations of organic solvents and metal cations (Cu2+ and Fe2+) in the visible region of the spectrum (λmax ≈ 520–680 nm) with a response time within 50 s. Porphyrin-functionalised optical sensors offer great promise in fields varying from environmental monitoring to biochemical sensing to printable optical devices.

Graphical abstract: Pulsed laser writing of holographic nanosensors

Supplementary files

Article information

Article type
Paper
Submitted
18 Dec 2013
Accepted
14 Feb 2014
First published
20 Mar 2014

J. Mater. Chem. C, 2014,2, 3569-3576

Pulsed laser writing of holographic nanosensors

A. K. Yetisen, M. M. Qasim, S. Nosheen, T. D. Wilkinson and C. R. Lowe, J. Mater. Chem. C, 2014, 2, 3569 DOI: 10.1039/C3TC32507E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements