Issue 4, 2015

Direct detection of microRNA based on plasmon hybridization of nanoparticle dimers

Abstract

MicroRNAs (miRNA) are important for regulating a range of biochemical pathways. Abnormal levels of miRNA in cells or secreted into biological fluids have been identified in diseases. MiRNA can therefore be potential biomarkers for early disease diagnosis; however their detection and quantification are challenging. Herein we apply the sensing platform of discrete actuatable dimers for the detection of human miR-210 (hsa-miR-210-3p). The detection signal is a spectral blue shift in the hybridized plasmon mode as monitored by single-nanostructure spectroscopy. We investigate the specificity and detection limit of the platform and quantify miR-210 levels in RNA extracts of cells cultured under different oxygen tensions. In addition we demonstrate the feasibility of detection in complex media by examining miR-210 secreted in cell media. This sensing platform may be developed as a bioanalytical tool for validating miRNA profiles of biological fluids.

Graphical abstract: Direct detection of microRNA based on plasmon hybridization of nanoparticle dimers

Supplementary files

Article information

Article type
Paper
Submitted
27 Nov 2014
Accepted
03 Dec 2014
First published
03 Dec 2014

Analyst, 2015,140, 1140-1148

Author version available

Direct detection of microRNA based on plasmon hybridization of nanoparticle dimers

Y. Wang, E. MacLachlan, B. K. Nguyen, G. Fu, C. Peng and J. I. L. Chen, Analyst, 2015, 140, 1140 DOI: 10.1039/C4AN02189D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements