Issue 15, 2014

Gas chromatography/Fourier transform infrared/mass spectrometry coupling: a tool for Li-ion battery safety field investigation

Abstract

As electric vehicles may have a positive impact on global warming, worldwide endeavour is devoted to improving the performance, durability and safety of Li-ion batteries considered as the most promising technology. To help the characterisation and identification of volatile compounds released upon batteries ageing or during a system malfunction-induced thermal event, we implemented the coupling of the gas chromatography (GC) technique with mass spectrometry (MS) and Fourier transform infrared (FTIR) analytical tools. Through two detailed examples related to the thermal runaway phenomenon and the battery swelling, this paper provides evidence that the complementarities of these techniques allow us to detect and then accurately identify a vast array of volatile molecules ensuing from electrochemically/chemically driven electrolyte degradation. Hence, this GC/FTIR/MS equipment will be powerful in studying the impact of new electrolyte molecules on the battery functioning or safety and in assessing its degradation state after long-term or unexpected premature capacity loss.

Graphical abstract: Gas chromatography/Fourier transform infrared/mass spectrometry coupling: a tool for Li-ion battery safety field investigation

Supplementary files

Article information

Article type
Technical Note
Submitted
07 Jan 2014
Accepted
05 May 2014
First published
06 May 2014

Anal. Methods, 2014,6, 6120-6124

Author version available

Gas chromatography/Fourier transform infrared/mass spectrometry coupling: a tool for Li-ion battery safety field investigation

G. Gachot, S. Grugeon, I. Jimenez-Gordon, G. G. Eshetu, S. Boyanov, A. Lecocq, G. Marlair, S. Pilard and S. Laruelle, Anal. Methods, 2014, 6, 6120 DOI: 10.1039/C4AY00054D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements