Issue 44, 2014

Hydrothermal synthesis of perovskite-type MTiO3 (M = Zn, Co, Ni)/TiO2 nanotube arrays from an amorphous TiO2 template

Abstract

Ordered perovskite-type MTiO3/TiO2 nanotube arrays (NTAs) (M = Zn, Co, Ni) are prepared by a general hydrothermal route based on amorphous TiO2 NTAs via electrochemical anodization of Ti foil. The as-anodized amorphous TiO2 is not stable and can react with H2O in solution producing soluble Ti(OH)62− to form anatase nanoparticles (NPs) via water-induced dissolution and recrystallization. The pH and salt content in the solution play important roles in the morphology and composition of the hydrothermal products. In the presence of a metal acetate, the reaction between Ti(OH)62− and H+ is dramatically restricted and the reaction proceeds preferentially between Ti(OH)62− and M2+ (M = Zn, Co, Ni) to produce insoluble MTiO3 NPs which adhere onto the original architecture in situ to form perovskite-type MTiO3/TiO2 NTAs. This study elucidates the role of the amorphous structure in the formation of MTiO3 and provides a general means of synthesizing nanostructured MTiO3.

Graphical abstract: Hydrothermal synthesis of perovskite-type MTiO3 (M = Zn, Co, Ni)/TiO2 nanotube arrays from an amorphous TiO2 template

Supplementary files

Article information

Article type
Paper
Submitted
17 May 2014
Accepted
31 Jul 2014
First published
07 Oct 2014

CrystEngComm, 2014,16, 10280-10285

Hydrothermal synthesis of perovskite-type MTiO3 (M = Zn, Co, Ni)/TiO2 nanotube arrays from an amorphous TiO2 template

X. Zhang, B. Gao, L. Hu, L. Li, W. Jin, K. Huo and P. K. Chu, CrystEngComm, 2014, 16, 10280 DOI: 10.1039/C4CE00992D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements