Issue 7, 2015

Structural and chemical changes of Zn-doped CeO2 nanocrystals upon annealing at ultra-high temperatures

Abstract

The structure of doped ceria plays an important role in its chemical reactivity and catalytic performance. However, for the majority of the dopants studied, whether a monophasic solid solution is formed or not is typically determined only by standard X-ray diffraction (XRD). In-depth structural characterization is lacking. In this paper we have prepared Zn-doped ceria nanocrystals exhibiting twice the oxygen storage capacity (OSC) of pure ceria. X-ray photoelectron spectroscopy (XPS) shows that the material is chemically inhomogeneous with zinc enrichment in the surface layer. X-ray fluorescence (XRF) reveals significant compositional inhomogeneity of the material after annealing in air at 1300 °C for 24 h. The standard structural characterization of this material using room temperature XRD and transmission electron microscopy (TEM) fails to reveal its correct phase composition. Based on clear evidence from in situ high temperature XRD we show that, after calcination at 500 °C, the material is not monophasic: X-ray amorphous ZnO is present within the material. The amorphous ZnO crystallizes at 800 °C and undergoes second-stage incorporation at even higher temperatures. This second-stage incorporation is not complete after annealing and trace amounts of ZnO remain according to synchrotron-based XRD. Our work provides valuable insight into the incorporation mechanism of zinc into the ceria lattice, and in particular, raises some doubts on the phase compositions reported in many previous studies on doped ceria.

Graphical abstract: Structural and chemical changes of Zn-doped CeO2 nanocrystals upon annealing at ultra-high temperatures

Article information

Article type
Paper
Submitted
05 Nov 2014
Accepted
09 Jan 2015
First published
12 Jan 2015
This article is Open Access
Creative Commons BY license

CrystEngComm, 2015,17, 1646-1653

Author version available

Structural and chemical changes of Zn-doped CeO2 nanocrystals upon annealing at ultra-high temperatures

F. Lin, I. Alxneit and A. Wokaun, CrystEngComm, 2015, 17, 1646 DOI: 10.1039/C4CE02202E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements