Issue 22, 2014

Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2

Abstract

Molybdenum disulfide (MoS2) and tungsten diselenide (WSe2) are prototypical layered two-dimensional transition metal dichalcogenide materials, with each layer consisting of three atomic planes. We refer to each layer as a trilayer (TL). We study the thermoelectric properties of 1–4TL MoS2 and WSe2 using a ballistic transport approach based on the electronic band structures and phonon dispersions obtained from first-principles calculations. Our results show that the thickness dependence of the thermoelectric properties is different under n-type and p-type doping conditions. Defining ZT1st peak as the first peak in the thermoelectric figure of merit ZT as doping levels increase from zero at 300 K, we found that ZT1st peak decreases as the number of layers increases for MoS2, with the exception of 2TL in n-type doping, which has a slightly higher value than 1TL. However, for WSe2, 2TL has the largest ZT1st peak in both n-type and p-type doping, with a ZT1st peak value larger than 1 for n-type WSe2. At high temperatures (T > 300 K), ZT1st peak dramatically increases when the temperature increases, especially for n-type doping. The ZT1st peak of n-type 1TL-MoS2 and 2TL-WSe2 can reach 1.6 and 2.1, respectively.

Graphical abstract: Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2

Article information

Article type
Paper
Submitted
01 Feb 2014
Accepted
14 Apr 2014
First published
14 Apr 2014

Phys. Chem. Chem. Phys., 2014,16, 10866-10874

Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2

W. Huang, X. Luo, C. K. Gan, S. Y. Quek and G. Liang, Phys. Chem. Chem. Phys., 2014, 16, 10866 DOI: 10.1039/C4CP00487F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements