Issue 35, 2014

Challenges in modelling the reaction chemistry of interstellar dust

Abstract

Studies aiming to understand the physicochemical properties of interstellar dust and the chemical reactions that occur on and in it have traditionally been the preserve of astronomical observation and experimental attempts to mimic astronomically relevant conditions in the laboratory. Increasingly, computational modelling in its various guises is establishing a complementary third pillar of support to this endeavour by providing detailed insights into the complexities of interstellar dust chemistry. Inherently, the basis of computational modelling is to be found in the details (e.g. atomic structure/composition, reaction barriers) that are difficult to probe accurately from observation and experiment. This bottom-up atom-based theoretical approach, often itself based on deeper quantum mechanical principles, although extremely powerful, also has limitations when systems become too large or complex. In this Perspective, after first providing a general background to the current state of observational-based knowledge, we introduce a number of computational modelling methods with reference to recent state-of-the-art studies, in order to highlight the capabilities of such approaches in this field. Specifically, we first outline the use of computational chemistry methods for dust nucleation, structure, and individual reactions on bare and icy dust surfaces. Later, we review kinetic modelling of networks of reactions relevant to dust chemistry and how to take into account quantum tunnelling effects in the low temperature reactions in the interstellar medium. Finally, we point to the future challenges that need to be overcome for computational modelling to provide even more detailed and encompassing perspectives on the nature and reaction chemistry of interstellar dust.

Graphical abstract: Challenges in modelling the reaction chemistry of interstellar dust

Article information

Article type
Perspective
Submitted
21 Feb 2014
Accepted
30 May 2014
First published
02 Jun 2014

Phys. Chem. Chem. Phys., 2014,16, 18623-18643

Challenges in modelling the reaction chemistry of interstellar dust

S. T. Bromley, T. P. M. Goumans, E. Herbst, A. P. Jones and B. Slater, Phys. Chem. Chem. Phys., 2014, 16, 18623 DOI: 10.1039/C4CP00774C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements