Issue 32, 2014

Photophysical, amplified spontaneous emission and charge transport properties of oligofluorene derivatives in thin films

Abstract

We investigate the photophysical and amplified spontaneous emission properties of a series of monodisperse solution-processable oligofluorenes functionalized with hexyl chains at the C9 position of each fluorene unit. Thin films of these oligofluorenes are then used in organic field-effect transistors and their charge transport properties are examined. We have particularly focused our attention on the influence of oligofluorene length on the absorption and steady-state fluorescence spectra, on the HOMO/LUMO energy levels, on the photoluminescence lifetime and quantum yield as well as on the amplified spontaneous emission properties and the charge carrier mobilities. Differential scanning calorimetry and X-ray diffraction measurements demonstrate that, among all oligofluorene derivatives used in this study, only the structure and morphology of the pentafluorene film is significantly modified by a thermal treatment above the glass transition temperature, resulting in a 9 nm blue-shift of the fluorescence spectrum without significant changes in the photoluminescence quantum yield and in the amplified spontaneous emission threshold. In parallel, hole field-effect mobility is significantly increased from 8.6 × 10−7 to 3.8 × 10−5 cm2 V−1 s−1 upon thermal treatment, due to an increase of crystallinity. This study provides useful insights into the morphological control of oligofluorene thin films and how it affects their photophysical and charge transport properties. Moreover, we provide evidence that, because of the low threshold, the tunability of the amplified spontaneous emission and the photostability of the films, these oligofluorenes are promising candidates for organic solid-state laser applications.

Graphical abstract: Photophysical, amplified spontaneous emission and charge transport properties of oligofluorene derivatives in thin films

Article information

Article type
Paper
Submitted
17 Mar 2014
Accepted
21 Jun 2014
First published
04 Jul 2014

Phys. Chem. Chem. Phys., 2014,16, 16941-16956

Author version available

Photophysical, amplified spontaneous emission and charge transport properties of oligofluorene derivatives in thin films

E. Y. Choi, L. Mazur, L. Mager, M. Gwon, D. Pitrat, J. C. Mulatier, C. Monnereau, A. Fort, A. J. Attias, K. Dorkenoo, J. E. Kwon, Y. Xiao, K. Matczyszyn, M. Samoc, D.-W. Kim, A. Nakao, B. Heinrich, D. Hashizume, M. Uchiyama, S. Y. Park, F. Mathevet, T. Aoyama, C. Andraud, J. W. Wu, A. Barsella and J. C. Ribierre, Phys. Chem. Chem. Phys., 2014, 16, 16941 DOI: 10.1039/C4CP01134A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements