Issue 23, 2014

Crystal plane-dependent gas-sensing properties of zinc oxide nanostructures: experimental and theoretical studies

Abstract

The sensitivity of a metal oxide gas sensor is strongly dependent on the nature of the crystal surface exposed to the gas species. In this study, two types of zinc oxide (ZnO) nanostructures: nanoplates and nanorods with exposed (0001) and (10[1 with combining macron]0) crystal surfaces, respectively, were synthesized through facile solvothermal methods. The gas-sensing results show that sensitivity of the ZnO nanoplates toward ethanol is two times higher than that of the ZnO nanorods, at an optimum operating temperature of 300 °C. This could be attributed to the higher surface area and the exposed (0001) crystal surfaces. DFT (Density Functional Theory) simulations were carried out to study the adsorption of ethanol on the ZnO crystal planes such as (0001), (10[1 with combining macron]0), and (11[2 with combining macron]0) with adsorbed O ions. The results reveal that the exposed (0001) planes of the ZnO nanoplates promote better ethanol adsorption by interacting with the surface oxygen p (O2p) orbitals and stretching the O–H bond to lower the adsorption energy, leading to the sensitivity enhancement of the nanoplates. These findings will be useful for the fabrication of metal oxide nanostructures with specifically exposed crystal surfaces for improved gas-sensing and/or catalytic performance.

Graphical abstract: Crystal plane-dependent gas-sensing properties of zinc oxide nanostructures: experimental and theoretical studies

Supplementary files

Article information

Article type
Paper
Submitted
25 Mar 2014
Accepted
24 Apr 2014
First published
25 Apr 2014

Phys. Chem. Chem. Phys., 2014,16, 11471-11480

Author version available

Crystal plane-dependent gas-sensing properties of zinc oxide nanostructures: experimental and theoretical studies

Y. V. Kaneti, Z. Zhang, J. Yue, Q. M. D. Zakaria, C. Chen, X. Jiang and A. Yu, Phys. Chem. Chem. Phys., 2014, 16, 11471 DOI: 10.1039/C4CP01279H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements