Issue 31, 2014

Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set

Abstract

By using different evaluation strategies, we systemically evaluated the performance of Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) methodologies based on more than 1800 protein–ligand crystal structures in the PDBbind database. The results can be summarized as follows: (1) for the one-protein-family/one-binding-ligand case which represents the unbiased protein–ligand complex sampling, both MM/GBSA and MM/PBSA methodologies achieve approximately equal accuracies at the interior dielectric constant of 4 (with rp = 0.408 ± 0.006 of MM/GBSA and rp = 0.388 ± 0.006 of MM/PBSA based on the minimized structures); while for the total dataset (1864 crystal structures), the overall best Pearson correlation coefficient (rp = 0.579 ± 0.002) based on MM/GBSA is better than that of MM/PBSA (rp = 0.491 ± 0.003), indicating that biased sampling may significantly affect the accuracy of the predicted result (some protein families contain too many instances and can bias the overall predicted accuracy). Therefore, family based classification is needed to evaluate the two methodologies; (2) the prediction accuracies of MM/GBSA and MM/PBSA for different protein families are quite different with rp ranging from 0 to 0.9, whereas the correlation and ranking scores (an averaged rp/rs over a list of protein folds and also representing the unbiased sampling) given by MM/PBSA (rp-score = 0.506 ± 0.050 and rs-score = 0.481 ± 0.052) are comparable to those given by MM/GBSA (rp-score = 0.516 ± 0.047 and rs-score = 0.463 ± 0.047) at the fold family level; (3) for the overall prediction accuracies, molecular dynamics (MD) simulation may not be quite necessary for MM/GBSA (rp-minimized = 0.579 ± 0.002 and rp-1ns = 0.564 ± 0.002), but is needed for MM/PBSA (rp-minimized = 0.412 ± 0.003 and rp-1ns = 0.491 ± 0.003). However, for the individual systems, whether to use MD simulation is depended. (4) both MM/GBSA and MM/PBSA may be unable to give successful predictions for the ligands with high formal charges, with the Pearson correlation coefficient ranging from 0.621 ± 0.003 (neutral ligands) to 0.125 ± 0.142 (ligands with a formal charge of 5). Therefore, it can be summarized that, although MM/GBSA and MM/PBSA perform similarly in the unbiased dataset, for the currently available crystal structures in the PDBbind database, compared with MM/GBSA, which may be used in multi-target comparisons, MM/PBSA is more sensitive to the investigated systems, and may be more suitable for individual-target-level binding free energy ranking. This study may provide useful guidance for the post-processing of docking based studies.

Graphical abstract: Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set

Supplementary files

Article information

Article type
Paper
Submitted
31 Mar 2014
Accepted
28 May 2014
First published
28 May 2014

Phys. Chem. Chem. Phys., 2014,16, 16719-16729

Author version available

Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set

H. Sun, Y. Li, S. Tian, L. Xu and T. Hou, Phys. Chem. Chem. Phys., 2014, 16, 16719 DOI: 10.1039/C4CP01388C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements