Issue 46, 2014

Enhanced thermoelectric performance in the p-type half-Heusler (Ti/Zr/Hf)CoSb0.8Sn0.2 system via phase separation

Abstract

A novel approach for optimization of the thermoelectric properties of p-type Heusler compounds with a C1b structure was investigated. A successful recipe for achieving intrinsic phase separation in the n-type material based on the TiNiSn system is isoelectronic partial substitution of Ti with its heavier homologues Zr and Hf. We applied this concept to the p-type system MCoSb0.8Sn0.2 by a systematic investigation of samples with different compositions at the Ti position (M = Ti, Zr, Hf, Ti0.5Zr0.5, Zr0.5Hf0.5, and Ti0.5Hf0.5). We thus achieved an approximately 40% reduction of the thermal conductivity and a maximum figure of merit ZT of 0.9 at 700 °C. This is a 80% improvement in peak ZT from 0.5 to 0.9 at 700 °C compared to the best published value of an ingot p-type half-Heusler compound. Thus far, comparable good thermoelectric p-type materials of this structure type have only been realized by a nanostructuring process via ball milling of premelted ingot samples followed by a rapid consolidation method, like hot pressing. The herein-presented simple arc-melting fabrication method reduces the fabrication time as compared to this multi-step nanostructuring process. The high mechanical stability of the Heusler compounds is favorable for the construction of thermoelectric modules. The Vickers hardness values are close to those of the n-type material, leading to good co-processability of both materials.

Graphical abstract: Enhanced thermoelectric performance in the p-type half-Heusler (Ti/Zr/Hf)CoSb0.8Sn0.2 system via phase separation

Article information

Article type
Paper
Submitted
10 Jun 2014
Accepted
07 Aug 2014
First published
13 Aug 2014

Phys. Chem. Chem. Phys., 2014,16, 25258-25262

Author version available

Enhanced thermoelectric performance in the p-type half-Heusler (Ti/Zr/Hf)CoSb0.8Sn0.2 system via phase separation

E. Rausch, B. Balke, S. Ouardi and C. Felser, Phys. Chem. Chem. Phys., 2014, 16, 25258 DOI: 10.1039/C4CP02561J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements