Issue 2, 2015

The key role of polymer grafted nanoparticles in the phase miscibility of an LCST mixture

Abstract

Blends of bromo-terminated polystyrene (PS-Br) and poly(vinyl methylether) (PVME) exhibit lower critical solution temperatures. In this study, PS-Br was designed by atom transfer radical polymerization and was converted to thiol-capped polystyrene (PS-SH) by reacting with thiourea. The silver nanoparticles (nAg) were then decorated with covalently bound PS-SH macromolecules to improve the phase miscibility in the PS-Br–PVME blends. Thermally induced demixing in this model blend was followed in the presence of polystyrene immobilized silver nanoparticles (PS-g-nAg). The graft density of the PS macromolecules was estimated to be ca. 0.78 chains per nm2. Although the matrix and the grafted molecular weights were similar, PS-g-nAg particles were expelled from the PS phase and were localized in the PVME phase of the blends. This was addressed with respect to intermediate graft density and favourable PS–PVME contacts from microscopic interactions point of view. Interestingly, blends with 0.5 wt% PS-g-nAg delayed the spinodal decomposition temperature in the blends by ca. 18 °C with respect to the control blends. The scale of cooperativity, as determined by differential scanning calorimetry, increased only marginally in the case of PS-g-nAg; however, it increased significantly in the presence of bare nAg particles.

Graphical abstract: The key role of polymer grafted nanoparticles in the phase miscibility of an LCST mixture

Article information

Article type
Paper
Submitted
04 Jul 2014
Accepted
14 Sep 2014
First published
17 Sep 2014

Phys. Chem. Chem. Phys., 2015,17, 868-877

The key role of polymer grafted nanoparticles in the phase miscibility of an LCST mixture

G. P. Kar, A. Bharati, P. Xavier, G. Madras and S. Bose, Phys. Chem. Chem. Phys., 2015, 17, 868 DOI: 10.1039/C4CP02925A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements