Issue 43, 2014

Destructuring ionic liquids in ionogels: enhanced fragility for solid devices

Abstract

Confining ionic liquids (ILs) with added lithium salt within silica host networks enhances their fragility and improves their conductivity. Overall, conductivity measurements, Raman spectroscopy of the TFSI anion and NMR spectroscopy of the lithium cation show segregative interaction of lithium ions with the SiO2 host matrix. This implies at IL/SiO2 interfaces a breakdown of aggregated regions that are found systematically in bulk ILs. Such destructuration due to the interface effect determines the fragility and thus results locally at the interface in short relaxation times, low viscosity, and good ionic conductivity. The “destructuration” of ion pairs or domains makes ILs within ionogels a competitive alternative to existing solid ionic conductors in all-solid devices, such as lithium batteries and supercapacitors.

Graphical abstract: Destructuring ionic liquids in ionogels: enhanced fragility for solid devices

Article information

Article type
Paper
Submitted
18 Jul 2014
Accepted
22 Sep 2014
First published
22 Sep 2014

Phys. Chem. Chem. Phys., 2014,16, 23639-23645

Author version available

Destructuring ionic liquids in ionogels: enhanced fragility for solid devices

A. Guyomard-Lack, P.-E. Delannoy, N. Dupré, C. V. Cerclier, B. Humbert and J. Le Bideau, Phys. Chem. Chem. Phys., 2014, 16, 23639 DOI: 10.1039/C4CP03187C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements