Issue 40, 2014

Vibrational spectra and structures of neutral Si6X clusters (X = Be, B, C, N, O)

Abstract

Neutral silicon clusters doped with first row elements (Si6X) have been generated (X = B, C, N, O) and characterized by infrared–ultraviolet (IR–UV) two-photon resonance-enhanced ionization spectroscopy (X = C, O) and quantum chemical calculations (X = Be, B, C, N, O, Si). In the near threshold UV photoionization, the ion signal of specific cluster sizes can be significantly enhanced by resonant excitation with tunable IR light prior to UV irradiation, allowing for the measurement of the IR spectra of Si7, Si6C, and Si6O clusters. Structural assignments are achieved with the help of a global optimization procedure using density functional theory (DFT). The most stable calculated structures show the best agreement between predicted and measured spectra. The dopant atoms in the Si6X clusters have a negative net charge and the Si atoms act as electron donors within the clusters. Moreover, the overall structures of the Si6X clusters depend strongly on the nature of the dopant atom, i.e., its size and valency. While in some of the Si6X clusters one Si atom in Si7 is simply substituted by the dopant atom (X = Be, B, C), other cases exhibit a completely different geometry (X = N, O). As a general trend, doping of the Si7 cluster with first-row dopants is predicted to shift the optically allowed electronic transitions into the visible or even near-IR spectral range due to symmetry reduction or the radical character of the doped cluster.

Graphical abstract: Vibrational spectra and structures of neutral Si6X clusters (X = Be, B, C, N, O)

Supplementary files

Article information

Article type
Paper
Submitted
31 Jul 2014
Accepted
27 Aug 2014
First published
16 Sep 2014

Phys. Chem. Chem. Phys., 2014,16, 22364-22372

Vibrational spectra and structures of neutral Si6X clusters (X = Be, B, C, N, O)

N. X. Truong, M. Savoca, D. J. Harding, A. Fielicke and O. Dopfer, Phys. Chem. Chem. Phys., 2014, 16, 22364 DOI: 10.1039/C4CP03414G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements