Issue 2, 2015

Adsorption of metal adatoms on single-layer phosphorene

Abstract

Single- or few-layer phosphorene is a novel two-dimensional direct-bandgap nanomaterial. Based on first-principles calculations, we present a systematic study on the binding energy, geometry, magnetic moment and electronic structure of 20 different adatoms adsorbed on phosphorene. The adatoms cover a wide range of valences, including s and p valence metals, 3d transition metals, noble metals, semiconductors, hydrogen and oxygen. We find that adsorbed adatoms produce a rich diversity of structural, electronic and magnetic properties. Our work demonstrates that phosphorene forms strong bonds with all studied adatoms while still preserving its structural integrity. The adsorption energies of adatoms on phosphorene are more than twice higher than on graphene, while the largest distortions of phosphorene are only ∼0.1–0.2 Å. The charge carrier type in phosphorene can be widely tuned by adatom adsorption. The unique combination of high reactivity with good structural stability is very promising for potential applications of phosphorene.

Graphical abstract: Adsorption of metal adatoms on single-layer phosphorene

Supplementary files

Article information

Article type
Paper
Submitted
29 Aug 2014
Accepted
12 Nov 2014
First published
12 Nov 2014

Phys. Chem. Chem. Phys., 2015,17, 992-1000

Author version available

Adsorption of metal adatoms on single-layer phosphorene

V. V. Kulish, O. I. Malyi, C. Persson and P. Wu, Phys. Chem. Chem. Phys., 2015, 17, 992 DOI: 10.1039/C4CP03890H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements