Issue 16, 2015

Formation of 5- and 6-methyl-1H-indene (C10H10) via the reactions of the para-tolyl radical (C6H4CH3) with allene (H2CCCH2) and methylacetylene (HCCCH3) under single collision conditions

Abstract

The reactions of the p-tolyl radical with allene-d4 and methylacetylene-d4 as well as of the p-tolyl-d7 radical with methylacetylene-d1 and methylacetylene-d3 were carried out under single collision conditions at collision energies of 44–48 kJ mol−1 and combined with electronic structure and statistical (RRKM) calculations. Our experimental results indicated that the reactions of p-tolyl with allene-d4 and methylacetylene-d4 proceeded via indirect reaction dynamics with laboratory angular distributions spanning about 20° in the scattering plane. As a result, the center-of-mass translational energy distribution determined a reaction exoergicity of 149 ± 28 kJ mol−1 and exhibited a pronounced maximum at around 20 to 30 kJ mol−1. In addition, the center-of-mass angular flux distribution T(θ) depicted a forward–backward symmetry and indicated geometric constraints upon the decomposing complex(es). Combining with calculations, these results propose that the bicyclic polycyclic aromatic hydrocarbons, 6-methyl-1H-indene (p1) and 5-methyl-1H-indene (p2), are formed under single collision conditions at fractions of at least 85% in both reaction systems. For the p-tolyl–methylacetylene system, experiments with partially deuterated reactants also reveal the formation of a third isomer p5 (1-methyl-4-(1-propynyl)benzene) at levels of 5–10%, highlighting the importance in conducting reactions with partially deuterated reactants to elucidate the underlying reaction pathways comprehensively.

Graphical abstract: Formation of 5- and 6-methyl-1H-indene (C10H10) via the reactions of the para-tolyl radical (C6H4CH3) with allene (H2CCCH2) and methylacetylene (HCCCH3) under single collision conditions

Article information

Article type
Paper
Submitted
23 Sep 2014
Accepted
02 Mar 2015
First published
03 Mar 2015

Phys. Chem. Chem. Phys., 2015,17, 10510-10519

Author version available

Formation of 5- and 6-methyl-1H-indene (C10H10) via the reactions of the para-tolyl radical (C6H4CH3) with allene (H2CCCH2) and methylacetylene (HCCCH3) under single collision conditions

T. Yang, D. S. N. Parker, B. B. Dangi, R. I. Kaiser and A. M. Mebel, Phys. Chem. Chem. Phys., 2015, 17, 10510 DOI: 10.1039/C4CP04288C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements