Issue 4, 2015

Ordered nanoparticle arrays interconnected by molecular linkers: electronic and optoelectronic properties

Abstract

Arrays of metal nanoparticles in an organic matrix have attracted a lot of interest due to their diverse electronic and optoelectronic properties. Recent work demonstrates that nanoparticle arrays can be utilized as a template structure to incorporate single molecules. In this arrangement, the nanoparticles act as electronic contacts to the molecules. By varying parameters such as the nanoparticle material, the matrix material, the nanoparticle size, and the interparticle distance, the electronic behavior of the nanoparticle arrays can be substantially tuned and controlled. Furthermore, via the excitation of surface plasmon polaritons, the nanoparticles can be optically excited and electronically read-out. The versatility and possible applications of well-ordered nanoparticle arrays has been demonstrated by the realization of switching devices triggered optically or chemically and by the demonstration of chemical and mechanical sensing. Interestingly, hexagonal nanoparticle arrays may also become a useful platform to study the physics of collective plasmon resonances that can be described as Dirac-like bosonic excitations.

Graphical abstract: Ordered nanoparticle arrays interconnected by molecular linkers: electronic and optoelectronic properties

Associated articles

Article information

Article type
Review Article
Submitted
04 Jul 2014
First published
04 Nov 2014

Chem. Soc. Rev., 2015,44, 999-1014

Ordered nanoparticle arrays interconnected by molecular linkers: electronic and optoelectronic properties

J. Liao, S. Blok, S. J. van der Molen, S. Diefenbach, A. W. Holleitner, C. Schönenberger, A. Vladyka and M. Calame, Chem. Soc. Rev., 2015, 44, 999 DOI: 10.1039/C4CS00225C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements