Issue 5, 2014

Dehydration of xylose and glucose to furan derivatives using bifunctional partially hydroxylated MgF2 catalysts and N2-stripping

Abstract

The current furfural production yield is low due to the use of non-selective homogeneous catalysts and expensive separation. In this work, partially hydroxylated MgF2 catalysts, synthesized using different water contents, were screened during xylose dehydration in water–toluene at 160 °C. The different Lewis/Brønsted ratios on the MgF2 catalysts showed that under-coordinated Mg can isomerize xylose to xylulose, whilst the surface OH-groups were responsible for the dehydration reactions. The presence of glucose as a co-carbohydrate reduced the furfural selectivity from 86 to 81%, whilst it also led to high 5-hydroxymethylfurfural selectivity. The tests catalyzed by MgF2 in combination with simultaneous N2-stripping showed that a furfural selectivity of 87% could be achieved using low xylose loadings. Moreover, the catalysts regenerated by H2O2 showed high activity during the dehydration tests in water–toluene at 160 °C.

Graphical abstract: Dehydration of xylose and glucose to furan derivatives using bifunctional partially hydroxylated MgF2 catalysts and N2-stripping

Supplementary files

Article information

Article type
Paper
Submitted
31 Jan 2014
Accepted
11 Feb 2014
First published
11 Feb 2014
This article is Open Access
Creative Commons BY-NC license

Catal. Sci. Technol., 2014,4, 1357-1368

Author version available

Dehydration of xylose and glucose to furan derivatives using bifunctional partially hydroxylated MgF2 catalysts and N2-stripping

I. Agirrezabal-Telleria, Y. Guo, F. Hemmann, P. L. Arias and E. Kemnitz, Catal. Sci. Technol., 2014, 4, 1357 DOI: 10.1039/C4CY00129J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements