Issue 21, 2014

Effect of f–f interactions on quantum tunnelling of the magnetization: mono- and dinuclear Dy(iii) phthalocyaninato triple-decker single-molecule magnets with the same octacoordination environment

Abstract

The single-molecule magnet (SMM) behaviour of dinuclear Ln(III)-Pc triple-decker complexes (Dy(III)–Y(III): 1 and Dy(III)–Dy(III): 2) with the same octacoordination environment and slow magnetic relaxation behaviour were explained using X-ray crystallography and static and dynamic susceptibility measurements. In particular, interactions among the 4f electrons of dinuclear Dy(III)-Pc triple-decker type SMMs have never been discussed on the basis of the same octacoordination environment. Our results clearly show that the Dy(III) ion sites of 1 and 2 are equivalent, consistent with the crystal structure. 2 Exhibited ferromagnetic interaction between Dy(III) ions. This is clear evidence that the magnetic relaxation mechanism depends heavily on the dipole–dipole (f–f) interactions between the Dy(III) ions in the dinuclear systems. For both 1 and 2, quantum tunnelling of the magnetization (QTM) was observed. However, the magnetic relaxation time (τ) for 2 was one order of magnitude greater than that for 1, and single-component magnetic relaxation behaviour was explained. In other words, it is possible to use f–f interactions to increase τ by one order of magnitude.

Graphical abstract: Effect of f–f interactions on quantum tunnelling of the magnetization: mono- and dinuclear Dy(iii) phthalocyaninato triple-decker single-molecule magnets with the same octacoordination environment

Supplementary files

Article information

Article type
Paper
Submitted
06 Jan 2014
Accepted
05 Feb 2014
First published
05 Feb 2014

Dalton Trans., 2014,43, 7716-7725

Effect of f–f interactions on quantum tunnelling of the magnetization: mono- and dinuclear Dy(III) phthalocyaninato triple-decker single-molecule magnets with the same octacoordination environment

K. Katoh, R. Asano, A. Miura, Y. Horii, T. Morita, B. K. Breedlove and M. Yamashita, Dalton Trans., 2014, 43, 7716 DOI: 10.1039/C4DT00042K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements