Issue 32, 2014

Polyaniline shell cross-linked Fe3O4 magnetic nanoparticles for heat activated killing of cancer cells

Abstract

Superparamagnetic Fe3O4 nanoparticles are appealing materials for heat activated killing of cancer cells. Here, we report a novel method to enhance the heat activated killing of cancer cells under an AC magnetic field (AMF) by introducing a polyaniline impregnated shell onto the surface of Fe3O4 nanoparticles. These polyaniline shell cross-linked magnetic nanoparticles (PSMN) were prepared by in situ polymerization of aniline hydrochloride on the surface of carboxyl PEGylated Fe3O4 nanoparticles. XRD and TEM analyses revealed the formation of single phase inverse spinel Fe3O4 nanoparticles of a size of about 10 nm. The successful growth of the polyaniline shell on the surface of carboxyl PEGylated magnetic nanoparticles (CPMN) is evident from FTIR spectra, DLS, TGA, zeta-potential and magnetic measurements. Both CPMN and PSMN show good colloidal stability, superparamagnetic behavior at room temperature and excellent heating efficacy under AMF. It has been observed that the heating efficacy of PSMN under AMF was slightly reduced as compared to that of CPMN. The enhanced toxicity of PSMN to cancer cells under AMF suggests their strong potential for magnetic hyperthermia. Furthermore, PSMN shows high loading affinity for an anticancer drug (doxorubicin), its sustained release and substantial internalization in tumor cells.

Graphical abstract: Polyaniline shell cross-linked Fe3O4 magnetic nanoparticles for heat activated killing of cancer cells

Supplementary files

Article information

Article type
Paper
Submitted
26 Mar 2014
Accepted
02 Jun 2014
First published
02 Jun 2014

Dalton Trans., 2014,43, 12263-12271

Author version available

Polyaniline shell cross-linked Fe3O4 magnetic nanoparticles for heat activated killing of cancer cells

S. Rana, N. V. Jadhav, K. C. Barick, B. N. Pandey and P. A. Hassan, Dalton Trans., 2014, 43, 12263 DOI: 10.1039/C4DT00898G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements