Issue 9, 2014

A multiple ion-exchange membrane design for redox flow batteries

Abstract

Here we present a multiple ion-exchange membrane (IEM) cell design for redox flow batteries (RFBs) that can generally accommodate redox pair combinations with any mixed ion charges. This design also allows flexible choice of electrolytes such as an acid electrolyte at one electrode while a base in the other. More specifically, the double-IEM cell with one anion-exchange membrane (AEM), one cation-exchange membrane (CEM), and a middle electrolyte in between can work with all redox pairs except for the case of two hybrid redox pairs (i.e., an anion–cation pair vs. an anion–cation pair). For the combination of two hybrid pairs, a triple-IEM cell with three membranes (CEM/AEM/CEM or AEM/CEM/AEM) and two middle electrolytes is needed. The double- and triple-IEM cells bring unprecedented freedom in choosing redox pairs and supporting electrolytes. Of particular importance, two featured aqueous RFBs are demonstrated here: (1) ultra-high voltage zinc–cerium RFB with 3.08 V standard cell voltage, the highest among all known aqueous RFBs; and (2) ultra-low cost sulfur–iron RFB with 1.22 V standard cell voltage, with two highly available elements (iron and sulfur are the 1st and 5th most produced elements worldwide, respectively).

Graphical abstract: A multiple ion-exchange membrane design for redox flow batteries

Supplementary files

Article information

Article type
Paper
Submitted
15 Jan 2014
Accepted
04 Feb 2014
First published
05 Feb 2014

Energy Environ. Sci., 2014,7, 2986-2998

Author version available

A multiple ion-exchange membrane design for redox flow batteries

S. Gu, K. Gong, E. Z. Yan and Y. Yan, Energy Environ. Sci., 2014, 7, 2986 DOI: 10.1039/C4EE00165F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements