Issue 10, 2014

Improved precision and spatial resolution of sulfur isotope analysis using NanoSIMS

Abstract

High precision analyses of all four sulfur isotopes in four pyrite and three sphalerite standards and in working reference samples were carried out using a CAMECA NanoSIMS 50L instrument. The measurements were made using three different settings of the Faraday cup (FC) and/or electron multiplier (EM) detectors, which meet different requirements for spatial resolution. The effects of EM aging and quasi-simultaneous arrival were corrected before the calibration of instrumental mass fractionation by a standard–sample–standard bracket method using the standards measured together with the samples. High analytical precision was achieved by counting 32S, 33S and 34S with the FCs and 36S with the EM (i.e. the FC–FC–FC–EM mode) using a 0.7 μm diameter ∼350 pA Cs+ primary beam and scanning over areas of 5 × 5 μm2. The standard deviations of spot-to-spot and grain-to-grain (external reproducibility 1 SD) measurements were less than 0.3, 0.3 and 0.7‰ for δ33S, δ34S and δ36S, respectively. To achieve a higher lateral resolution of ≤2 × 2 μm2, the Cs+ beam was reduced to 7–10 pA with a diameter of ∼200 nm; 32S was measured with the FC and the other signals were measured with the EMs. The external reproducibility (1 SD) was better than 0.5‰ for both δ33S and δ34S and was 3‰ for δ36S. To achieve the highest lateral resolution for the analysis of submicron-sized sulfides, a ∼0.7 pA Cs+ beam of ∼100 nm diameter was used, scanning over areas of 0.5 × 0.5 μm2, and all 32S, 33S and 34S were counted with the EMs. The external reproducibility (1 SD) was better than 1.5‰ for both δ33S and δ34S. These three modes have important applications in the isotope analysis of micron-sized sulfur samples, such as pyrite framboids and areas of complex zoning in sulfide minerals.

Graphical abstract: Improved precision and spatial resolution of sulfur isotope analysis using NanoSIMS

Article information

Article type
Paper
Submitted
04 May 2014
Accepted
30 Jul 2014
First published
30 Jul 2014

J. Anal. At. Spectrom., 2014,29, 1934-1943

Improved precision and spatial resolution of sulfur isotope analysis using NanoSIMS

J. Zhang, Y. Lin, W. Yang, W. Shen, J. Hao, S. Hu and M. Cao, J. Anal. At. Spectrom., 2014, 29, 1934 DOI: 10.1039/C4JA00140K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements