Issue 18, 2014

Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass

Abstract

Femtosecond lasers have unique characteristics of ultrashort pulse width and extremely high peak intensity; however, one of the most important features of femtosecond laser processing is that strong absorption can be induced only at the focus position inside transparent materials due to nonlinear multiphoton absorption. This exclusive feature makes it possible to directly fabricate three-dimensional (3D) microfluidic devices in glass microchips by two methods: 3D internal modification using direct femtosecond laser writing followed by chemical wet etching (femtosecond laser-assisted etching, FLAE) and direct ablation of glass in water (water-assisted femtosecond laser drilling, WAFLD). Direct femtosecond laser writing also enables the integration of micromechanical, microelectronic, and microoptical components into the 3D microfluidic devices without stacking or bonding substrates. This paper gives a comprehensive review on the state-of-the-art femtosecond laser 3D micromachining for the fabrication of microfluidic, optofluidic, and electrofluidic devices. A new strategy (hybrid femtosecond laser processing) is also presented, in which FLAE is combined with femtosecond laser two-photon polymerization to realize a new type of biochip termed the ship-in-a-bottle biochip.

Graphical abstract: Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass

Article information

Article type
Critical Review
Submitted
09 May 2014
Accepted
26 Jun 2014
First published
11 Jul 2014

Lab Chip, 2014,14, 3447-3458

Author version available

Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng and K. Midorikawa, Lab Chip, 2014, 14, 3447 DOI: 10.1039/C4LC00548A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements