Issue 1, 2015

Design of a 2D no-flow chamber to monitor hematopoietic stem cells

Abstract

Hematopoietic stem cells (HSCs) are the most commonly used cell type in cell-based therapy. However, the investigation of their behavior in vitro has been limited by the difficulty of monitoring these non-adherent cells under classical culture conditions. Indeed, fluid flow moves cells away from the video-recording position and prevents single cell tracking over long periods of time. Here we describe a large array of 2D no-flow chambers allowing the monitoring of single HSCs for several days. The chamber design has been optimized to facilitate manufacturing and routine use. The chip contains a single inlet and 800 chambers. The chamber medium can be renewed by diffusion within a few minutes. This allowed us to stain live human HSCs with fluorescent primary antibodies in order to reveal their stage in the hematopoiesis differentiation pathway. Thus we were able to correlate human HSCs' growth rate, polarization and migration to their differentiation stage.

Graphical abstract: Design of a 2D no-flow chamber to monitor hematopoietic stem cells

Supplementary files

Article information

Article type
Paper
Submitted
10 Jul 2014
Accepted
18 Sep 2014
First published
23 Oct 2014

Lab Chip, 2015,15, 77-85

Author version available

Design of a 2D no-flow chamber to monitor hematopoietic stem cells

T. Cambier, T. Honegger, V. Vanneaux, J. Berthier, D. Peyrade, L. Blanchoin, J. Larghero and M. Théry, Lab Chip, 2015, 15, 77 DOI: 10.1039/C4LC00807C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements