Issue 12, 2014

Self-oxidation of cytochrome c at methionine80 with molecular oxygen induced by cleavage of the Met–heme iron bond

Abstract

Met80 of cytochrome c (cyt c) has been shown to dissociate from its heme iron when cyt c interacts with cardiolipin (CL), which triggers the release of cyt c into the cytosol initiating apoptosis. We found that the mass of human cyt c increases by 16 Da in the Met80–Lys86 region by reaction with molecular oxygen in the presence of CL-containing liposomes and dithiothreitol (DTT). To investigate the effect of Met80 dissociation on the reaction of cyt c with molecular oxygen without affecting its secondary structures, a human cyt c mutant (Δ8384 cyt c) was constructed by removing two amino acids (Val83 and Gly84) from the loop containing Met80. According to MALDI-TOF-MS and tandem mass measurements, Met80 of Δ8384 cyt c was modified site-specifically to methionine sulfoxide when purified in the presence of molecular oxygen, whereas Met80 was not modified in the absence of molecular oxygen. A red-shift of the Soret band from 406 to 412 nm and absorption increase at ∼536 and ∼568 nm were observed for Δ8384 cyt c when it reacted with DTT and molecular oxygen, followed by a further red-shift of the Soret band to 416 nm and absorption increase at ∼620 and ∼650 nm. These results indicate that Met80 of cyt c is oxidized site-specifically by formation of the oxy and subsequent compound I-like species when Met80 dissociates from the heme iron, where the Met80 modification may affect its peroxidase activity related to apoptosis.

Graphical abstract: Self-oxidation of cytochrome c at methionine80 with molecular oxygen induced by cleavage of the Met–heme iron bond

Supplementary files

Article information

Article type
Paper
Submitted
12 May 2014
Accepted
01 Sep 2014
First published
01 Sep 2014

Mol. BioSyst., 2014,10, 3130-3137

Author version available

Self-oxidation of cytochrome c at methionine80 with molecular oxygen induced by cleavage of the Met–heme iron bond

Z. Wang, Y. Ando, A. D. Nugraheni, C. Ren, S. Nagao and S. Hirota, Mol. BioSyst., 2014, 10, 3130 DOI: 10.1039/C4MB00285G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements