Issue 2, 2015

Electrochemical characterization of hydroquinone derivatives with different substituents in acetonitrile

Abstract

The effect of carbonyl groups in the ortho position with respect to a hydroxyl group on the electrochemical oxidation of hydroquinones in acetonitrile is studied. The electrochemical response of hydroquinone on a glassy carbon electrode in 0.1 M tetrabutylammonium perchlorate was investigated in detail by voltammetry and coulometry. From these experiments, the oxidation potential was shifted to more positive values with respect to hydroquinone due to the presence of electron withdrawing groups bonded to the aromatic ring. For all compounds a diffusional behavior was observed, and the diffusion coefficient (D) of substituted hydroquinones was calculated showing higher values than found for unsubstituted hydroquinone. Theoretical calculations were carried out to gain insights into the intramolecular hydrogen bond present in these molecules affecting their electrochemical behavior. Relevant theoretical data are optimized geometrical parameters, HOMO energy, condensed radical Fukui functions (f°), natural charges, Wiberg bond orders (WBO), stabilization energies caused by electron transfer, and hyperconjugation stabilization energies from the NBO analysis. In most cases, the calculations show good agreement with experimental 1H-NMR data and support the electrochemical results.

Graphical abstract: Electrochemical characterization of hydroquinone derivatives with different substituents in acetonitrile

Article information

Article type
Paper
Submitted
26 Sep 2014
Accepted
25 Nov 2014
First published
26 Nov 2014

New J. Chem., 2015,39, 1237-1246

Author version available

Electrochemical characterization of hydroquinone derivatives with different substituents in acetonitrile

R. Salazar, J. Vidal, M. Martínez-Cifuentes, R. Araya-Maturana and O. Ramírez-Rodríguez, New J. Chem., 2015, 39, 1237 DOI: 10.1039/C4NJ01657B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements