Issue 21, 2014

Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode

Abstract

An in situ chemical synthetic approach has been designed for the fabrication of a covalently coupled hybrid consisting of graphitic carbon nitride (g-C3N4) with reduced graphene oxide (rGO) with differing g-C3N4/rGO ratio. The epoxy groups of graphene oxide (GO) undergo a nucleophilic substitution reaction with dicyandiamide (C2H4N4) to form the C2H4N4–GO composite via a covalent C–N bond, and then both the in situ polymerization of C2H4N4 and the thermal reduction of GO can be achieved at higher temperatures, forming the covalently coupled g-C3N4–rGO. FT-IR, CP-MAS NMR and XPS analyses, clearly revealed a covalent interaction between the g-C3N4 and rGO sheets. The g-C3N4–rGO exhibits an unprecedented high, stable and reversible capacity of 1525 mA h g−1 at a current density of 100 mA g−1 after 50 cycles. Even at a large current density of 1000 mA g−1, a reversible capacity of 943 mA h g−1 can still be retained. The superior electrochemical performance of g-C3N4–rGO is attributed to the specific characteristics of the unique nanostructure of g-C3N4–rGO and the concerted effects of g-C3N4 and rGO, including covalent interactions between the two moieties, the good conductivity and high special surface area of the nanocomposite, as well as the template effect of the planar amino group of g-C3N4 for the dispersed decoration of Li+ ions.

Graphical abstract: Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode

Supplementary files

Article information

Article type
Paper
Submitted
09 Jun 2014
Accepted
08 Aug 2014
First published
11 Aug 2014

Nanoscale, 2014,6, 12555-12564

Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode

Y. Fu, J. Zhu, C. Hu, X. Wu and X. Wang, Nanoscale, 2014, 6, 12555 DOI: 10.1039/C4NR03145H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements