Issue 21, 2014

Semimetallic-to-metallic transition and mobility enhancement enabled by reversible iodine doping of graphene

Abstract

We demonstrate that a reversible semimetallic-to-metallic transition can be realized in monolayer graphene by iodine doping and dedoping processes. Upon iodine doping, the charge transfer from graphene to iodine creates a high hole density up to 4.75 × 1013cm−2, well beyond that realized by applying gate voltages. Iodine-doped graphene shows metallic behaviour, as evidenced by the resistance variation with temperature and magnetic field. We further introduce an iodine dedoping method to completely remove the iodine anions from graphene surfaces. Transport measurements show that after dedoping treatments, the mobility of graphene is significantly enhanced, much higher than that of pristine graphene. The improvement in graphene electronic properties is attributed to the corrosive characteristic of iodine that it can react with and remove absorbed atoms on graphene surfaces. Our work not only opens a facile and effective way to tune the properties of monolayer graphene reversibly, but also demonstrates a new method to increase the quality of graphene.

Graphical abstract: Semimetallic-to-metallic transition and mobility enhancement enabled by reversible iodine doping of graphene

Article information

Article type
Paper
Submitted
10 Jun 2014
Accepted
02 Sep 2014
First published
04 Sep 2014

Nanoscale, 2014,6, 13196-13202

Semimetallic-to-metallic transition and mobility enhancement enabled by reversible iodine doping of graphene

Z. Wu, Y. Han, R. Huang, X. Chen, Y. Guo, Y. He, W. Li, Y. Cai and N. Wang, Nanoscale, 2014, 6, 13196 DOI: 10.1039/C4NR03183K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements