Issue 21, 2014

Photoelectric cooperative patterning of liquid permeation on the micro/nano hierarchically structured mesh film with low adhesion

Abstract

Stimuli-responsive surface wettability has been intensively studied, especially wettability controlled by photoelectric cooperation, which appears to be a trend for more effective surface wetting. In this field, the patterning of controllable surface wettability is still a challenge in the application of liquid-printing techniques because of the high adhesion and high responsive voltage, as well as low mechanical strength, of the substrate. Herein, we have demonstrated the patterning of liquid permeation controlled by photoelectric cooperative wetting on the micro/nano hierarchically structured ZnO mesh film. The special micro/nano hierarchically structured ZnO mesh is beneficial for lowering adhesion force on the mesh surface than those of the TiO2/AAO nanopore array films previously reported for the discontinuous tri-phase contact line, in addition to precisely controlled microscale liquid movement with considerably lower threshold voltage for the hierarchical structure. Moreover, the stainless-steel mesh with different pore sizes as a substrate behaves with higher mechanical strength and lower cost, compared with the anodized Ti mesh. Thus, this work is promising for accelerating the development of patterned liquid permeation and extending the application of micro/nanofluidic system and micronanoelectronic technology.

Graphical abstract: Photoelectric cooperative patterning of liquid permeation on the micro/nano hierarchically structured mesh film with low adhesion

Supplementary files

Article information

Article type
Paper
Submitted
23 Jun 2014
Accepted
23 Aug 2014
First published
26 Aug 2014

Nanoscale, 2014,6, 12822-12827

Photoelectric cooperative patterning of liquid permeation on the micro/nano hierarchically structured mesh film with low adhesion

Z. Guo, X. Zheng, D. Tian, Y. Song, J. Zhai, X. Zhang, W. Li, X. Wang, S. Dou and L. Jiang, Nanoscale, 2014, 6, 12822 DOI: 10.1039/C4NR03496A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements