Issue 4, 2015

Graphene field effect transistor as a probe of electronic structure and charge transfer at organic molecule–graphene interfaces

Abstract

The electronic structure of physisorbed molecules containing aromatic nitrogen heterocycles (triazine and melamine) on graphene is studied using a combination of electronic transport, X-ray photoemission spectroscopy and density functional theory calculations. The interfacial electronic structure and charge transfer of weakly coupled molecules on graphene is found to be governed by work function differences, molecular dipole moments and polarization effects. We demonstrate that molecular depolarization plays a significant role in these charge transfer mechanisms even at submonolayer coverage, particularly for molecules which possess strong dipoles. Electronic transport measurements show a reduction of graphene conductivity and charge carrier mobility upon the adsorption of the physisorbed molecules. This effect is attributed to the formation of additional electron scattering sites in graphene by the molecules and local molecular electric fields. Our results show that adsorbed molecules containing polar functional groups on graphene exhibit different coverage behaviour to nonpolar molecules. These effects open up a range of new opportunities for recognition of different molecules on graphene-based sensor devices.

Graphical abstract: Graphene field effect transistor as a probe of electronic structure and charge transfer at organic molecule–graphene interfaces

Supplementary files

Article information

Article type
Paper
Submitted
16 Sep 2014
Accepted
30 Nov 2014
First published
01 Dec 2014

Nanoscale, 2015,7, 1471-1478

Author version available

Graphene field effect transistor as a probe of electronic structure and charge transfer at organic molecule–graphene interfaces

J. Cervenka, A. Budi, N. Dontschuk, A. Stacey, A. Tadich, K. J. Rietwyk, A. Schenk, M. T. Edmonds, Y. Yin, N. Medhekar, M. Kalbac and C. I. Pakes, Nanoscale, 2015, 7, 1471 DOI: 10.1039/C4NR05390G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements