Issue 23, 2014

Directly grown Si nanowire arrays on Cu foam with a coral-like surface for lithium-ion batteries

Abstract

In order to mitigate the drastic volumetric expansion (>300%) of silicon (Si) during the lithiation process, we demonstrate the synthesis of novel Si nanowire arrays (n-SNWAs) with a coral-like surface on Cu foam via a one-step CVD method, in which the Cu foam can simultaneously act as a catalyst and current collector. The unique coral-like surface endows n-SNWAs with a high structural integrity, which is beneficial for enhancing their electrochemical performance. In addition, the as-prepared n-SNWAs on Cu foam can be directly applied as the anode for lithium-ion batteries (LIBs), exhibiting a very high reversible discharge capacity (2745 mA h g−1 at 200 mA g−1) and a fast charge and discharge capability (884 mA h g−1 at 3200 mA g−1), which is much higher than the conventional SNWAs (c-SNWAs, only 127 mA h g−1 at 3200 mA g−1). Meanwhile, they deliver an improved cycling stability (2178 mA h g−1 at 400 mA g−1 after 50 cycles). More significantly, the as-synthesized n-SNWAs on Cu foam also possess a superior specific areal capacity of 4.1 mA h cm−2 at 0.6 mA cm−2. Such excellent electrochemical performance is superior, or at least comparable, to the best report for Si anode materials. Combining the cost-effective and facile preparation method, the present n-SNWAs on Cu foam can serve as a promising anode for LIBs.

Graphical abstract: Directly grown Si nanowire arrays on Cu foam with a coral-like surface for lithium-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
19 Sep 2014
Accepted
09 Oct 2014
First published
13 Oct 2014

Nanoscale, 2014,6, 14441-14445

Directly grown Si nanowire arrays on Cu foam with a coral-like surface for lithium-ion batteries

S. Jing, H. Jiang, Y. Hu and C. Li, Nanoscale, 2014, 6, 14441 DOI: 10.1039/C4NR05469E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements