Issue 11, 2015

Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries

Abstract

Today, one of the major challenges is to provide green and powerful energy sources for a cleaner environment. Rechargeable lithium-ion batteries (LIBs) are promising candidates for energy storage devices, and have attracted considerable attention due to their high energy density, rapid response, and relatively low self-discharge rate. The performance of LIBs greatly depends on the electrode materials; therefore, attention has been focused on designing a variety of electrode materials. Graphene is a two-dimensional carbon nanostructure, which has a high specific surface area and high electrical conductivity. Thus, various studies have been performed to design graphene-based electrode materials by exploiting these properties. Metal-oxide nanoparticles anchored on graphene surfaces in a hybrid form have been used to increase the efficiency of electrode materials. This review highlights the recent progress in graphene and graphene-based metal-oxide hybrids for use as electrode materials in LIBs. In particular, emphasis has been placed on the synthesis methods, structural properties, and synergetic effects of metal-oxide/graphene hybrids towards producing enhanced electrochemical response. The use of hybrid materials has shown significant improvement in the performance of electrodes.

Graphical abstract: Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries

Article information

Article type
Review Article
Submitted
29 Nov 2014
Accepted
04 Feb 2015
First published
05 Feb 2015

Nanoscale, 2015,7, 4820-4868

Author version available

Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries

M. Srivastava, J. Singh, T. Kuila, R. K. Layek, N. H. Kim and J. H. Lee, Nanoscale, 2015, 7, 4820 DOI: 10.1039/C4NR07068B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements