Issue 10, 2015

π-Conjugated polymers derived from 2,5-bis(2-decyltetradecyl)-3,6-di(selenophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione for high-performance thin film transistors

Abstract

Novel 2,5-bis(2-decyltetradecyl)-3,6-di(selenophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DSDPP)-containing conjugated polymers with different donor monomers were synthesized via a Pd(0)-catalyzed Stille coupling reaction. Solubilized 2-decyltetradecyl (DT) groups were tethered to the N-atoms in diketopyrrolopyrrole (DPP). As electron-donating units, bithiophene (BT) and a π-extended (E)-2-(2-(thiophen-2-yl)vinyl)thiophene (TVT) were introduced into the polymer backbone. Besides thiophene-based monomers, biselenophene (BS) and (E)-2-(2-(selenophen-2-yl)vinyl)selenophene (SVS) were also copolymerized with the same DSDPP-based monomer. DSDPP-BS and DSDPP-SVS copolymers exhibited higher hole mobilities in thin film transistors (TFTs) than the corresponding BT and TVT analogs. In particular, a TFT having a DSDPP-SVS copolymer-based active layer showed the highest hole mobility of ∼5.23 cm2 V−1 s−1 and high current on/off ratios of ∼107; this indicates that the π-extended SVS significantly improves charge transport properties.

Graphical abstract: π-Conjugated polymers derived from 2,5-bis(2-decyltetradecyl)-3,6-di(selenophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione for high-performance thin film transistors

Supplementary files

Article information

Article type
Paper
Submitted
11 Nov 2014
Accepted
18 Dec 2014
First published
19 Dec 2014

Polym. Chem., 2015,6, 1777-1785

Author version available

π-Conjugated polymers derived from 2,5-bis(2-decyltetradecyl)-3,6-di(selenophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione for high-performance thin film transistors

T. W. Lee, D. H. Lee, J. Shin, M. J. Cho and D. H. Choi, Polym. Chem., 2015, 6, 1777 DOI: 10.1039/C4PY01536C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements