Issue 71, 2014

Synthesis, characterization and cytotoxicity of europium incorporated ZnO–graphene nanocomposites on human MCF7 breast cancer cells

Abstract

Europium incorporated ZnO-chemically converted graphene (CCG) nanocomposites (ZEG) were synthesized by adopting a solvothermal process at 95 °C from the precursors of varying europium nitrate to zinc acetate molar ratios (R = 0.00, 0.05, 0.10, 0.15) in a fixed content of graphene oxide. Eu level (R value) in the precursors was found to play a role on tailoring the crystallite/particle size of hexagonal ZnO, as evidenced from X-ray diffraction/transmission electron microscopy analysis. The presence of chemical interaction/complexation between the oxygen functionalities of CCG and inorganic moieties (ZnO/Zn2+ and Eu ions) of nanocomposites were studied by FTIR, Raman, UV-Vis spectral and XPS measurements. The nanocomposites possessed meso pores as confirmed from BET nitrogen adsorption isotherm, and the sample ZEG(10) (R = 0.10) was found to possess the highest specific surface area. In spite of an UV emission at ∼385 nm, an orange emission (appeared at 595 nm) along with other visible emissions was observed from the photoluminescence spectra of nanocomposites. However, the intensity of the orange emission (λex = 400 nm) was found to be maximum in the ZEG(10) sample, which produced relatively bright orange fluorescent images of human breast cancer cells (MCF7) under confocal laser scanning microscope. This indicated the internalization of the nanomaterials within the cells. As obtained from the MTT assay, the samples (R ≥ 0.10) exhibited comparatively low in vitro cytotoxicity (higher cell viability) on the cancer cells. The low cytotoxicity could be explained on the basis of the ID/IG (intensities of D and G bands of graphene) value of CCG, as realized from the Raman spectral measurement. The nanocomposite ZEG(10), having relatively large surface area, bright cell imaging capability and better cell viability, could be employed for cancer cell targeted optical imaging and drug delivery.

Graphical abstract: Synthesis, characterization and cytotoxicity of europium incorporated ZnO–graphene nanocomposites on human MCF7 breast cancer cells

Supplementary files

Article information

Article type
Paper
Submitted
25 Jun 2014
Accepted
01 Aug 2014
First published
04 Aug 2014

RSC Adv., 2014,4, 37479-37490

Author version available

Synthesis, characterization and cytotoxicity of europium incorporated ZnO–graphene nanocomposites on human MCF7 breast cancer cells

S. Bera, M. Ghosh, M. Pal, N. Das, S. Saha, S. K. Dutta and S. Jana, RSC Adv., 2014, 4, 37479 DOI: 10.1039/C4RA06243D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements